On The Slipway

Category: General (page 2 of 4)

Cordage and Hawser reels, Part I

One of the reasons this blog wasn’t updated for a quarter of a year was due to the trouble I had with assembling the cordage and hawser reels. I’ve split up the posts into two parts: standing and hanging reels. The latter are the thinner reels that are scattered around HMS Hood hanging from a bulkhead (about fifteen) plus the four smaller reels near the davits of the 27″ whalers. Here I’ll show the standing hawser and cordage reels, otherwise known as the opening scene of “how I started worrying and learned to hate my model”.

One of the things that will immediately become apparent when you start looking for photographs is that the reels are nearly always covered in canvas (just as the ships boats). Although I want to have the most accurate model I can build, I already decided to slightly cheat on those covers so that all detail would be there to admire. Using the images that I had, I started with a head count. This is quite difficult, as you need to determine the height of each reel correctly before you can decide what type it is, or perhaps you find out it is a type you missed? I certainly wouldn’t recommend estimating the type by eye, I really needed a ruler the estimate the dimensions in relation to items in each photograph.

I’ve identified five types. The first type is the large hawser reel (L) that is specified in the Anatomy of the Ship series volume (but not entirely to my liking). I found one behind the forward breakwater, two on either side of the aft searchlight platform, and one next to the bridge (see below).

Other types are seen here. The top right one is a cordage reel that remained on board HMS Hood, but I cannot find more that one, at the starboard side of the forward funnel. The bottom-left is a hawser reel that is similar to the largest hawser reel but smaller, about the height of the railing (hence medium). I found six so far: one behind the forward breakwater, two behind B-barbette, two in front of the main stairs on the boat deck (between and outboard of the funnels), one near the main mast. I also had a look at the image top left and decided this cordage had a few weight-saving holes. This is not uncommon so I made a variant on the medium hawser reel. I now think it’s just a normal cordage as the one top right and the image is too poor to make out its correct configuration. Still, these variants were added anyway. We know that many cordage reels were replaced by hawser reels so this one will be a hawser reel too. The last type is a hawser reel shown bottom left that is basically too small to be a medium hawser reel (so: small). There are four: two are fitted below the paravanes stored on either side of the bridge (lots of smaller reels are fitted there as well), and two were found at the far end of the boat deck, both at port side.

This image shows two small and one large reels at the far end of the boat deck. The right vent and 4″ mount serves as a reference for identifying them.

This image shows a nice surprise: there is a large hawser reel (taller than the railing) fitted near the bridge. There are no other images of this reel, so it’s quite difficult to make out its position.

The dimensions were obtained from careful observation, but the pattern followed from tracing existing reels from museum ships. This image was taken of HMS Haida, taken from Resin Shipyards, with permission. The design matches the drawing in Anatomy of the Ship and required dimensions nicely.

The other reels were drawn using what material I had. In order not too have too few details on these parts—can’t have that—I decided that each side of the reel should consist of three parts, as shown here. There are a few design choices I made that seemed like a wonderful idea but turned out to be quite to opposite. The center part would first be glued to the large part, by applying glue from behind. The combined parts would then be centered on a small drill and the last part would be added, nicely centered. I started with the largest reels, thinking them easiest to construct but they were the hardest to do by far. Notice that the center etch part has a small circle that fits nicely on the part at right? These need to be aligned. This was the first major error: it is so very difficult to apply glue while keeping the parts aligned. I’ll make sure to avoid breaking rotational symmetry of the parts when I can help it.

But this was only the beginning of my troubles. The parts are etched in steel—not brass—that material is very difficult to glue. All parts kept falling apart and proved to be very difficult to glue back without overdoing the glue or damaging the parts. I had to try out all different types of glue before deciding on one glue that worked quite well: a good bond, not too thick, not too expensive and easy to apply. I now use ordinary Pattex. I trashed all my other super glues and I won’t be buying these miracle glues on modeling shows as they clearly suck (no, the glues!). The Pattex won’t last very long when opened, so I bought many bottles. I also learned that flat PE parts squeeze most glue to the edges, so very little glue is actually between the parts. Removing excess glue usually results in not having any glue at all. Next time I’ll etch some ridges to keep the glue where it is supposed to go.

After having solved the 2010 glue crisis, I made the drums. Simple rod with a 0.3mm hole in the center. I used thin brass wire, set my lathe to the slowest setting, and applied a bit of glue. Turn on the lathe, and see how wonderful the wire will wind itself into impossible shapes and how the glue will get everywhere and forcing you to start all over. Again! Needless to say, I had a lot of failed parts. The next problem presented itself when you find out that you need to trim the drums to length so that the edges are perpendicular to the center line; otherwise these nice etched parts will be skewed and all effort was for nothing. Of course, when the bond of previously-etched parts wasn’t as good as you hoped for, the entire part could come loose at the last minute anyway. So, at the end of the construction phase, a small round of non-destructive testing was introduced to sift the strong from the weak parts. Those who could be saved went to the depressingly small pile of finished parts.

Here they are. Nineteen small models (short of one large reel). You’ll notice that the etch set, which I had made three times, has enough parts to make ninety (link). I thought I had enough parts to make lots and lots of parts and worry about how many I needed later. “I can always choose the ones that worked out best”. Unfortunately, I hardly have spare parts left! I have one spare cordage and four medium cordage reels that are probably wrong anyway. Still, I really like the those small holes and I think I’ll scatted them around the forward gun turrets.

So, on to the really small hawser reels. The good news is: only two etched part per reel and not six.

Happy ending in part II

Winches, Part I

Two types if winches were present, the variable speed winch (VSM) and the electric winch (EW). These winches are scattered mainly around the barbettes and the forward boat deck area for the boat derricks.

The above image shows HMS Hood shortly after her construction with both types of winch clearly visible. There are two VSWs between the forward and aft turret pairs plus two more on the starboard quarterdeck . Two EWs are placed at B-barbette, two on either side on the conning tower, two near the boat derricks, and two against the quarterdeck bulkhead. The winches near the turrets aren’t positioned symmetrically, so not all winches are shown on the above photograph.

If you look very closely, you’ll notice that the rigging of the boat cranes was changes at the end of Hoods career. Two winches were placed on the structure between the funnels as indicated above (reconstructed winch shown). All (most?) references indicate these winches are the same winches as previously placed on deck level but changed position. But then there would be no winch to drive the derrick, only the hook, and the rigging scheme no longer makes sense: these have to be new winches to operate the derricks. Images showing both in a single shot weren’t found.

The evidence is really staring you in the face if you look closely at the above photograph from the official HMS Hood site of these two sailors posing in front of the boat derrick’s EW. The 16″dinghy stowed to the bulkhead and the 25″ fast motor boat indicate this picture was taken after the winches were placed between the funnels and yet a winch remains visible. So, the number of EWs was increased to ten, though only eight models are required.

The left half of the image shows how the rigging of the boat derricks was lead to these new winches. The right half of the image shows that the two EWs on the quarterdeck were later moved inside and only the drums remain visible. No small wonder, considering that Hoods quarterdeck was always flooded when underway. Having the winches inside isn’t new, all the Queen Elizabeth battleships have their winches inside.

After having done a thorough head counter the two types of winches were traced using a CAD program. Some perspective is always present but they should be reasonably accurate. The VSWs still remain a bit of a guess though.

The main difficulty in making the winches are the drums. I spent many hours trying the get the lathe to do what I wanted and made many failed attempts. The drum was made from brass stock. made flush and the center was marked. A 1.0mm hole was drilled in next. The lathe was set to make a tube with a wall thickness of 0.1mm. The lathe was set at its maximum rpm.

The tube was parted from the stock brass using a parting tool bought from MicroMark and ground to a 0.4mm width as visible top left. Note I use the drill to support to tube while parting. Although I broke a few drills while experimenting (parting tool not set at the correct height), there really was no way to get a good tube without supporting it, otherwise the lathe tears the tube from the rod. This exercise was repeated for the styrene insert, drilled in with a 0.4mm drill, cut to size and fitted with stock styrene rod.

The next part proved to be very troublesome: I wanted to have 5 holes in the drum, spaced out at 72 degrees. I initially glued the brass tube to stock styrene by Plastruct, but small deviations in its roundness made this a futile effort. The rod was simply not accurate enough and I spent many hours and breaking many drills getting the part right. When using rod made to size with the lathe, I had no such problems and the five holes could be drilled in. I set the drill press to a high rpm and mounted the drum on the divider (Proxxon). You have to be really careful here, as the drill can occasionally push the styrene our and you can also crush the drum with ease in the chuck. Of course, this happened a few times.

Eight drums are now sitting comfortably in the EWs. The winches are built from mainly lathed parts.

Here you can see the completed EWs, with the etched parts for the control box and the some hand wheels. A nice exercise in getting to know the lathe better.

Searchlights, part II

The Searchlight part I post showed how the searchlight frame was made including the design for the etched parts. The design is repeated here:

The lantern is mostly made up from etched parts with one large to-be-rolled strip and some additional detail parts.

The rolling took some testing (made a few test lanterns first), but worked out well in the end. A stepped end cap was made with the lathe later sanded down to give the lantern its curved back.

The top detail has a small positioning block for the exact positioning (see top image, center, repeated on the rear surface of the detail part), the side parts are aligned on the lantern’s inclination axis. A small jig was made to hold the lantern in place while gluing the front detail into position.

The parts on the side really add a lot of wonderful detail. The parts were first rolled into shape and then added.

And here are the completed parts. Some brass wire (0.1) is added to the lantern top. The searchlight can still rotate for ease of painting. I doubt the inclination axis (i.e., small brass wire) will be visible after painting as a) the searchlights were usually set looking downward and b) I think I’ll add some glazing material to the PE front.

Paravanes

Two paravanes were mounted just aft of the conning tower, stowed to a bulkhead. Two others were stored in the lockers in the forward breakwater. There are many pictures of paravanes at The Vickers Photographic Archive. The size was determined from several Anatomy of the Ship series and estimates from photographs.

I used a drawing from the Grand Prix Shuppan series as a starting point for the design of the etched parts. Most early Japanese warships had Royal Navy style equipment on board and this drawing is an excellent match.

Note that the paravanes are not stored flat to the bulkhead, but at an angle. There’s a lifting eye on the superstructure and a hoist on the paravane that is off center so this was probably the easiest way to store it.

The part itself is made up from a tapered tube (lathe) and a series of etched parts. The cradles are already fixed to the models. The hoists aren’t in the same spot, but these parts are very very small and also not well visible when fixed to the model.

There isn’t really much else to say, except that they are very small and took about five hours to assemble.

Olderposts Newerposts

Copyright © 2018 On The Slipway

Theme by Anders NorenUp ↑