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Abstract 

A propeller parameterization method and its application 

to optimize a propeller geometry in an effective wake 

field is presented. The parameterization is based on an 

analysis of over 1,250 unique propeller designs in our 

database and can capture most (conventional) propeller 

shapes. For the optimisation the genetic algorithm 

NSGA-II is used that quickly narrows the parameter 

search range. 
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Introduction 

The choice for the main propeller parameters usually 

follows from propeller series analysis (e.g., Wageningen 

B-series) and clearances to the hull based on design 

guidelines. Here our aim is to generate a large family of 

propellers and—eventually—to analyze them for their 

propeller-induced pressure fluctuations and efficiency; 

one propeller can be chosen from the results. Ideally, no 

rules for clearances are required. In Foeth & Lafeber 

[2013] a parameterized propeller geometry is described 

as well as the results from a calculation study using 

randomly generated propellers; a process that was 

deemed inefficient. Here we describe the procedure when 

we couple the propeller parameterization with a genetic 

algorithm called Non-Sorting Dominating Genetic 

Algorithm II (NSGA-II) by Deb et al. (2002). At the time 

being we use fully-wetted results only, or, no cavitation 

hindrance. However, we do include the wake field of the 

ship so that our exercise replaces our series analysis 

using only a few parameters by a propeller optimization 

in a wake field. The wake field follows from the 

optimization of the hull form of a tanker (van der Ploeg 

et al. 2013). So, the goal of this exercise is to minimize 

propulsion power by having a large population of 

propellers evolve without generating any geometry that is 

unlike a real propeller.  

Propeller parameterization 

The geometry of a propeller can be described in terms of 

radial distribution functions (ITTC Definition) or as a 3D 

object. The latter is often used for varying hull forms 

e.g., by allowing Free-Form Deformation (FFD) to obtain 

new hull shapes. The propeller blade is a lifting surface 

and the cavitation performance in the wake field is 

sensitive to the pressure distribution; a parameterization 

allows for local geometry adaptations while changing the 

circulation distribution but maintaining the section shape 

of the design and thus the lifting-surface description. The 

approach is reminiscent to the variation of propeller 

properties during manual design. 

Here all geometries are analyzed using a BEM. The 

limitations of the BEM application with respect to the 

propeller geometry are documented and can be used to 

restrict the parameter range (e.g., restrict tip unloading); 

similar restrictions can follow from class strength 

regulations (e.g., skew angle, blade thickness); no a-

posteriori analysis of the geometry is required when 

using parameterization to set these properties. 

The propeller geometry is fully parameterized in its main 

parameters and its radial distribution functions for pitch, 

chord, camber, thickness, skew and rake. The distribution 

functions are replaced by rational Bezier curves 

consisting of no more than two line segments that are 

continuous in their first derivative only at their 

connections. Each segment is a piecewise polynomail 

written as a function of a parameter t  as a sum of base 

functions 
n
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with 
n

i  the Bernstein polynomial in the form of  
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Each Bernstein polynomial runs from 0jt   to 1 1jt    

along each curve segment defined by coordinates 
ip  that 

each have a weight 
iw . Here the order n  is here chosen 

to be 3n   with four control points. The result is a cubic 

curve whereby 
0p  and 

3p  are the end points of the curve 

and 
0 1p p  and 

3 2p p  directly specify the derivate at 
0p  

and 
3p . With these fixed end points and derivatives these 

curves are easy to manipulate. Some useful properties of 

the Bézier curves are that the curve is always boxed in 

within the convex hull of the points 
ip  (provided 0iw 

), the ,x y  coordinates of the curve depend on the 

respective ,x y  coordinates of the control points only 



(i.e., no coupling between the coordinates), switching 

between control points and the polynomial form is 

straightforward and the curve can be evaluated 

analytically for most of its properties. 

With these simple functions a series of discrete points for 

the radial distribution can be selected, directly linked to 

geometrical parameters. Figure: 1 shows the normalized 

pitch and chord distribution of a (random) stock propeller 

(open dots) and a best-fit of two cubic segments with 

uniform weights (red line); the start and end point lie at 

the hub and tip respectively and the center point indicates 

the radial position of the distribution’s maximum; these 

are parameters that are useful to the designer. 

For these two example fits, four additional points are 

required to determine the derivative and the curvature at 

the ends and center and the parameterization is mainly 

geared towards prescribing viable locations of these 

points. The center point 
3p  is the maximum so 

2p  and 

4p  lie also at 1y   so that the curve remains continuous. 

For the chord distribution the derivative at the tip is set at 

dc dx    by setting 1x   for both 
5p  and 

6p . In 

order to reduce the number of parameters further, we set 

1 2p p  and 
4 5p p , so they lie on the intersection of 

the tangents to the ends of the curves and the distances to 

the center point 
3p  are now a variable. 

In order to estimate and further reduce these degrees of 

freedoms (or DOFs) for the chord and pitch 

distributions—as well as all the other functions—we 

have analyzed the database of propellers at MARIN 

containing over 1,250 unique propeller designs. A curve-

fitting algorithm approximated all the radial distribution 

functions and returned the goodness of fit, derivative, 

curvature information, as well as statistical data of the 

parameter distributions For example, Figure: 2 shows 

the cumulative probability distribution (CDF) of the 

blade area ratio for fixed-pitch propellers, showing both 

data and an approximating function. 

 For most curves we estimate the derivate at 
0p  and 

6p  

based on their relative position to 
3p : if 

1  and 
1  are 

the angles of the vectors 
0 3p p  and 0 1,2p p  with the 

horizontal, respectively, then  
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with 1c  some constant. In Figure: 3 the relation between 

1  and 1  for the chord distribution is presented 

showing the results from the database analysis and a 

fitting function f  for several values of 1c , chosen such 

that the chord distribution remains monotone per 

piecewise element. Note that the goal is not to capture all 

points from the database but merely to capture most of 

them.  

 

 

Figure: 1 Chord (top) and pitch distribution of the stock 

propeller showing tabular input (○), and best fits of Beziér 

curves (red) and the parameterization (black), including the 

control points of both fits. Both fits share 
0p , 

3p , 
7p . For 

the parameterization points 1 2p p  and 
4 5p p . 

 

Figure: 2 CDF of the blade area ratio for fixed-pitch 

propellers in the MARIN database. 
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Figure: 3 Example of a database fit function, here for the 

derivative of the chord distribution as defined in Figure: 1 

 

With each curve exceptions are encountered. For 

instance, for the chord distribution we demand a 

derivative of dc dr    at the tip so 4,5p  must lie at 

   , 1,1x y   and cannot be a variable. Instead we vary 

the chord at the tip by modifying the weights 4,5w .  

The best fit of this parameterization with the input data is 

also presented in Figure: 1 (black)—showing the 

coinciding points 
1 2p p  and 

4 5p p —demonstrating 

that the input data of this stock propeller can be captured 

by the parameterized chord and pitch functions with no 

more than five parameters each. Naturally, not all radial 

distributions of the 1,250 propellers allowed themselves 

to be captured this easily, but most propellers have 

simple distributions. 

The skew of the propeller is described by a single curve 

segment with a given skew angle, skew bisector angle 

(mean skew angle) and the derivatives at the end. The 

camber distribution for the propellers in the database 

showed that over a third of all propellers have a (near) 

constant camber-to-chord ratio f c  but that other 

distributions could show much variation with resulting 

poorer fits using simple curves. It was observed that the 

oldest propellers have a constant f c , often with 

sections consisting of a flat face with leading and trailing 

edge offsets, instead of sections using a NACA 

thickness/camber distribution. Here the camber-to-chord 

distribution was taken as a linear function with a free 

slope and mean. The thickness of the propeller was taken 

as a constant distribution. Although cavitation and weight 

constraints are key design issues, the thickness does not 

significantly influence the results from the BEM analysis 

for fully wetted flow.  

The parameters were initially determined from the 

database probability functions within a preset search 

range given in Table 1 and were subsequently allowed to 

be manipulated by the optimizer within their 

predetermined bounds.  We express the values at the 

hub and tip as a reduction from the maximum (unity). 

The propeller analysis tool used was PROCAL, a 

Boundary-Element Method (BEM) developed within 

MARIN’s Cooperative Research Ships, CRS (Bosschers 

et al. 2008). 

Table 1 Parameter ranges 

Parameter Range 

Number of blades 4 

Diameter 3500-4076 mm 

Blade Area Ratio 0.50 – 0.80 

Chord reduction hub 0.00 – 0.70 

Radial position max. chord 0.30 – 0.80 

Chord reduction tip 1.00 

Pitch reduction hub 0.30 – 0.80 

Radial position max. pitch 0.40 – 0.80 

Pitch reduction tip 0.00 – 0.40 

Rake angle -10 – 10° 

Skew angle range 2 – 25° 

Mean skew angle -5 – 17.5° 

Camber to chord ratio 0.00 – 0.06 

Section thickness Naca66tmb 

Section camber Naca0.8mod 

 

Optimization routine 

Generally speaking, propellers that deviate from the 

predetermined shaft-rate-of-revolutions show an illusory 

efficiency increase; it is a trivial solution to fit a ship 

with a propeller with a higher pitch working at a lower 

rpm and thus attain a higher efficiency. In order to avoid 

a bias to overpitched propellers, all designs were 

(iteratively) corrected until the design thrust was 

obtained within 0.1% accuracy at the design rpm; an 

automatic pitch correction routine steered each design 

towards the design point typically obtaining converge in 

two or three steps.  

The genetic algorithm (GA) works along the principle of 

natural selection based on a series of optimization goals 

(evolutionary pressure) and population variation through 

cross-over and mutation of (genetic) information. Each 

individual is given a 'fitness value' ; fitter individuals 

have a better chance of staying in the population (i.e., 

alive) and sharing its information with other fit members 

to procreate a new parameter set: offspring. Here the so-

called Non-dominating Sorting Genetic Algorithm II 

(NSGA-II) by Deb et al. [2002] was used. NSGA2 is a 
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generational GA; an entirely new generation is generated 

at each iteration instant. A steady-state GA will replace 

individual members immediately once a superior solution 

is found.  

All results of a population are distributed in Pareto fronts 

that connect solutions that outperform each other on an 

equal number of goals and are equally ‘fit’. During the 

evolution the number of Pareto fronts reduces and after 

many iterations the entire population should ideally lie on 

a single Pareto front: the relation between mutually 

exclusive optimization goals should become readily 

apparent and no solution is dominated by another. When 

solutions on the same Pareto front clutter around the 

same goals the NSGA-II assumes that these solutions 

may consist of parameters that are close and might 

introduce a bias towards these results. A crowding 

algorithm further refines the fitness by preferring 

solutions that are farther away from clusters of solutions 

and thereby maintaining genetic spread; solutions on the 

far edges are always considered 'non-crowded'. However, 

individuals that have totally different genetics but 

identical goal values and are hence 'diverse' could thus be 

penalized in their fitness; the crowding distance criterion 

requires further study. 

A number of violations can also be included whereby the 

fitness of a solution degrades rapidly with an increase in 

the number of violations. These violations are here 

typically based on numerical results (e.g., poor 

convergence of the solution) as geometrical violations 

are already prevented from occurring by the settings of 

the parameterization. After all solutions have been 

ranked, the best individuals are kept for 'breeding'. This 

breeding process starts with a 'tournament': pairs of 

solutions are randomly taken and the fittest individual per 

paring is retained (when members are equally fit a 

random propeller is taken). By pairing random solutions, 

lesser individuals have some probability to keep sharing 

genetic information though the chances of these solutions 

on their offspring to remain within the selection of 

propellers decreases with each iteration.  

Once this first selection is performed, the entire batch of 

propellers is pair-wise subjected to a 'crossover' whereby 

each parameter has a chance to be modified and/or 

exchanged between pairs. After the crossover all 

parameters of each new propeller have a chance to be 

changed randomly in the 'mutation' process. The result is 

the 'offspring'. Both procedures are implemented as 

described in Deb & Agrawal [1995]. The entire 

procedure is repeated several times (here 20). After a 

number of iterations the most dominant solutions 

typically transfer their properties to the population and 

then the only variation left is mutation. This mutation 

performs little better than a random search and large 

improvements are unexpected.  

Results 

In the presented analysis the focus was on an optimum 

in-behind efficiency, B. Cavitation was not included at 

this stage as these calculations are comparatively CPU-

intensive and it is hypothesized that a first optimization is 

required determining the main parameter range before 

continuing to minimize the cavitation itself. A second 

substitute optimization goal was the minimization of the 

amplitude of the first harmonic of the propeller thrust—

KT— as an indicator to far-field radiated noise to ensure 

interaction with the wake field (Figure: 4). The 

progression of goals as a function of the generation of 

128 propellers is shown in Figure: 5. From the zeroth 

generation onward the (maximum) behind efficiency is 

not observed to increase much, in contrast to the decrease 

in KT. 

 

Figure: 4 Wake field, outer diameter 4067, max. 

tangential velocity 0.20 

 

Figure: 5 Progression of evaluation goals during an 

optimization for the first 20 generations. 
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Figure: 6 Evolution of goals as a function of diameter (top) 

and skew angle (bottom) 

When we plot the goals as a function of diameter and 

skew angle in Figure: 6 we note a clear relation of B 

with the diameter (top) and of KT with the skew angle 

(bottom). The GA also favors a low blade-area ratio of 

0.5. Both results are not entirely trivial; a low blade area 

ratio leads to lower chords and thus higher reduced 

frequencies as the propeller blade rotates through the ship 

wake peak leading to an increase in KT; in addition, a 

smaller diameter avoids the propeller tip going through 

the wake peak. Here the GA avoids a high KT by 

selecting the maximum allowed skew angle. Although 

the optimum diameter of a propeller is known to be often 

smaller in an effective wake field, here the diameter limit 

(the propeller tip cannot extend below the ship baseline) 

determines the maximum. The optimization is repeated 

whereby the skew angle and diameter are fixed at their 

upper limits and the blade area ratio at 0.55. 

In Figure: 7 the goal values of all solutions are shown 

forming a clear Pareto front
1
. The zeroeth (random) 

generation and last generation are highlighted. Although 

none of the individuals from the initial generation lie on 

the front—usually extinct after 3 or 4 generations—not 

all individuals are far removed from the Pareto front. 

Conversely, even though the front consists of individuals 

of only the last five generations, the last generation has 

many individuals some distance away from the Pareto 

front. In, Figure: 8, the evolution of the camber to chord 

ratio ( f c ) at the hub and tips is shown. At the tip, f c  

gravitates towards 0.015f c  , while for the hub the 

solutions bifurcate at 0.04f c   and 0.06f c  ; it is 

occasionally observed that one bifurcation trail becomes 

extinct after a number of generations, which may be the 

case here but the number of generations is simply 

insufficient. The correlation between the main parameters 

and optimization goals of the last generation is given in 

Table 2 where the correlation between f c  at the hub is 

negatively correlated with the efficiency and the f c  at 

the tip is positively correlated with the thrust variations 

(as KT is minimized, the camber of at the tip should 

remain small). It is noted that most parameters do not 

correlate with the behind efficiency other than the a weak 

correlation with the camber at the hub. In order to reduce 

KT, from the correlation table it follows that a tip pitch 

reduction and a low radial position of the maximum 

chord are required. Counter intuitively, the value of the 

pitch at the tip does not correlate with at B all. After 20 

generations the blade outline of all propellers greatly 

resemble the propeller in Figure: 9. 

 

Figure: 7 All results from the 2
nd

 alalysis showing the 

formation of a parameter front showing the first (•) and last 

(+) generations. 

                                                           
1
 and one exception to the left of the front that was later attributed to a 

meshing error; GAs  
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Figure: 8 Evolution of the camber-to-chord ratio 

 

Figure: 9 Typical blade outline after 20 generations 

Conclusions and discussion 

A parametric propeller coupled to the genetic algorithm 

NSGA-2 was described and the results for a propeller 

optimization in a ship wake field was presented. The 

current method is an alternative for the determination of 

the main propeller parameters to the use of propeller 

series analysis, with the advantage of taking the wake 

field into account when determining the optimum 

diameter and giving an early advice on the camber-to-

chord ratio and skew angle. From these results the search 

parameter range can be further reduced when optimizing 

for cavitation, that is, minimizing for propeller-induced 

force fluctuations on the hull. The next step towards fully 

automated propeller design is the optimization of a 

propeller in two wake fields simultaneously while 

minimizing for cavitation volume variations. 
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parameters and optimization goals 
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